您好、欢迎来到现金彩票网!
当前位置:2019跑狗图高清彩图 > 信息检索 >

哈工大社会计算与信息检索研究中心3篇长文被AAAI 2018录用 AAAI

发布时间:2019-06-27 03:27 来源:未知 编辑:admin

  原标题:哈工大社会计算与信息检索研究中心3篇长文被AAAI 2018录用 AAAI 2018 雷

  原标题:哈工大社会计算与信息检索研究中心3篇长文被AAAI 2018录用 AAAI 2018

  雷锋网AI科技评论按:本文首发于“哈工大SCIR”公众号,雷锋网AI科技评论获授权转载。

  哈尔滨工业大学社会计算与信息检索研究中心共有3篇论文被AAAI 2018录用,下面是论文列表及介绍:

  在人机对话过程中,人们通常会表现出某种立场、情绪以及尴尬等状态,我们称这些状态为用户在人机对话过程中的隐式反馈。相比于任务型人机对话在对话结束后通过问卷的形式显式地获取用户的反馈,隐式反馈更加自然且不需要用户作出对话之外的反馈操作。在开放域人机对话中,用户的隐式反馈普遍存在,因此本文将探寻人机对话过程中的用户隐式反馈对于开放域对话生成的作用,在强化学习的框架下,将隐式反馈建模到对话奖励函数中,获得比baseline更好的对话生成效果。

  语义依存图是近年来提出的对树结构句法或语义表示的扩展,它与树结构的主要区别是允许一些词拥有多个父节点,从而使其成为有向无环图(directed acyclic graph,DAG)。因此要获得句子的语义依存图,就需要对这种DAG进行分析。然而目前大多数工作集中于研究浅层依存树结构,少有人研究如何对DAG进行分析。本文提出一种基于转移的分析器,使用list-based arc-eager算法的变体对依存图进行分析。此外,我们还提出了两种有效的神经网络模块,分别用于获得转移系统中缓存和子图更好的表示。我们在SemEval-2016 Task 9 (中文)和SemEval-2015 Task 18 (英文)两个数据集上的实验都取得了很好结果。此外,我们的系统能通过简单的模型合并方法进一步提高性能。

  针对选择题型的机器阅读理解,本文充分挖掘了候选项在回答问题时的作用,在利用候选项加强对原文理解的同时,还考虑到候选项之间的关系。并且结合篇章层次结构,原文、问题和候选项得以在词级别和句子级别进行充分交互。本文提出的模型在RACE数据集上的取得了显著优于两个神经网络基准模型的结果。

http://indiacrazy.com/xinxijiansuo/353.html
锟斤拷锟斤拷锟斤拷QQ微锟斤拷锟斤拷锟斤拷锟斤拷锟斤拷锟斤拷微锟斤拷
关于我们|联系我们|版权声明|网站地图|
Copyright © 2002-2019 现金彩票 版权所有